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Abstract
The global burden of colorectal cancer (CRC) is a pressing concern, with a substantial impact on public health. Despite ad-
vancements in understanding the molecular mechanisms of CRC development, challenges remain in translating this knowl-
edge into effective clinical interventions. Key genetic mutations, notably in the adenomatous polyposis coli (APC) and Kirsten 
rat sarcoma virus (KRAS) genes, are central to CRC initiation and progression. Current CRC treatments include surgery and 
chemotherapy, often combined with targeted agents. However, resistance and heterogeneity within CRC patients limit the 
effectiveness of these therapies. Promisingly, research has focused on targeting APC and KRAS mutations for therapy. Small 
molecules inhibiting the Wnt pathway and antibodies targeting specific components are under investigation. Targeting KRAS 
itself is challenging due to its conserved structure, but disrupting its membrane interactions and subcellular localization are 
potential therapeutic strategies. To address the limitations of single-drug therapy, combination approaches are gaining trac-
tion. Combination therapy not only minimizes off-target effects but also tackles drug resistance and diverse genetic alterations 
within tumors. The intricate interplay of mutations and pathways in CRC necessitates multifaceted therapeutic strategies. 
Although progress has been made in understanding CRC genetics and developing targeted therapies, there is still work to be 
done to translate these insights into effective clinical treatments for CRC patients. This review provides crucial information for 
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novel combination treatments for CRC.
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Introduction
Colorectal cancer (CRC) is a malignant tumor that originates in 
the colon or rectum. CRC is a significant global health concern, 
as demonstrated by statistics from 2020, where approximately 
150,000 individuals worldwide received a CRC diagnosis, re-
sulting in 53,200 fatalities.1 Among these patients, 17,930 indi-
viduals under the age of 50 were diagnosed with CRC, leading 
to 3,640 deaths in this age group.1 Gender differences are appar-
ent, with CRC being more prevalent in males than in females, as 
evidenced by data from the World Health Organization database. 
Furthermore, variations in CRC incidence rates are evident glob-
ally. Countries such as Australia, New Zealand, Europe, and North 
America experience higher rates of the disease, while Africa and 
South-Central Asia exhibit lower rates (Global Burden of Disease 
Cancer Collaboration). These disparities may stem from factors 
such as dietary habits, environmental influences, and genetic vari-
ations.2 The rising trend of CRC incidence is particularly evident 
in China, where the burden on the healthcare system has been 
steadily increasing, especially in developed regions. A similar 

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14218/JTG.2023.00063
https://crossmark.crossref.org/dialog/?doi=10.14218/JTG.2023.00063&domain=pdf&date_stamp=2024-03-23
https://orcid.org/0000-0003-1539-9192
https://orcid.org/0000-0002-3671-5257
https://orcid.org/0000-0002-3671-5257
https://orcid.org/0000-0002-3671-5257
https://orcid.org/0000-0003-1539-9192
mailto:guoqing.chen@polyu.edu.hk
mailto:sibao.chen@polyu.edu.hk
mailto:sibao.chen@polyu.edu.hk


DOI: 10.14218/JTG.2023.00063  |  Volume 2 Issue 1, March 2024 53

Gong R.H. et al: Therapy for Colorectal Cancer focused on APC and KRAS mutations J Transl Gastroenterol

scenario has been observed in Hong Kong, where CRC remains 
a common form of cancer, as highlighted by 5,634 new cases re-
ported in 2018. Furthermore, the mortality rate for males was 37 
per 100,000, while for females, it was 22.2 per 100,000 (Centre for 
Health Protection 2020).

CRC is not solely attributed to a single genetic mutation; instead, 
it emerges from intricate molecular signaling pathways character-
ized by a complex interplay of mutations and disruptions. This 
process involves a gradual transition from adenoma to carcinoma 
and eventually to metastatic disease—a multistep journey driven 
by gene mutations and irregular pathways.3 Recent advances in 
genome-wide sequencing have unveiled a comprehensive array of 
nearly 80 mutated genes implicated in CRC. Notably, among these 
are adenomatous polyposis coli (APC), Kirsten rat sarcoma 2 viral 
oncogene homolog (KRAS), and p53.4 The APC gene mutation, 
occurring in 70–80% of CRC cases, plays a pivotal role within 
the Wnt/beta-catenin signaling pathway is significant.5 In addition 
to APC, another recurrently observed mutation involves the RAS 
gene family, especially KRAS, a commonly altered oncogene af-
fecting 30–50% of CRC patients.6 The p53 gene, functioning as a 
tumor suppressor, influences the cell cycle, apoptosis, genetic sta-
bility, and angiogenesis control.7 While specific mutations initiate 
tumorigenesis, it is important to recognize that the progression and 
development of tumors involve the intricate interplay of multiple 
genes.8 Additionally, epigenetic factors such as DNA methyla-
tion, histone modifications, chromatin remodelers, and noncoding 
RNAs have emerged as significant contributors to the advance-
ment and growth of CRC.9

This review explores APC and KRAS mutations in colorectal 
cancer, discusses prevailing treatment challenges, and outlines 
emerging combination therapies. We aim for this review to en-
hance comprehension of colorectal cancer’s mutational landscape 
and therapeutic strategies, thereby fostering research and imple-
mentation of innovative combination therapies.

APC mutations in CRC
The APC gene holds substantial importance as a frequently mu-
tated tumor suppressor gene within CRC.10 Situated on chromo-
some 5q21-q22, this gene spans 8535 nucleotides and comprises 
21 exons encoding a 310 kDa protein containing 2843 amino acids. 
A pivotal site for both germline and somatic mutations of APC 
lies within exon 15, encompassing 75% of the gene’s coding se-
quence.11 This finding is consistent with the central role of APC 
in governing the influence of the Wnt pathway on the prolifera-
tion and differentiation of gastrointestinal tract cells.12 Mechanisti-
cally, APC plays a pivotal role in inhibiting β-catenin/T-cell factor 
(TCF)-dependent transcription through complex breakdown. This 
process involves stimulating the phosphorylation and subsequent 
ubiquitin-dependent degradation of β-catenin.13 APC bolsters this 
degradation mechanism by promoting Axin multimerization and 
stabilizing the Axin complex.14 Additional regulatory mechanisms 
include reducing nuclear β-catenin levels through the promotion 
of β-catenin export, direct binding to β-catenin to impede TCF 
interactions,15 and facilitating C-terminal binding protein (CtBP)-
mediated repression of Wnt-target genes through direct interaction 
with a repression complex.16,17 Alterations in APC result in the ac-
tivation of β-catenin/TCF transcriptional activity due to β-catenin 
accumulation. This attenuation of CtBP-mediated inhibition with-
in the repression complex leads to elevated levels of downstream 
targets, including cyclin D1 and c-myc. These factors significantly 
influence tumor cell proliferation, apoptosis, and cell cycle regula-

tion (Fig. 1).18,19 Evidently, APC intricately interacts with critical 
signaling pathways and biological processes implicated in CRC 
development.10 Recent investigations have shown that restoring 
APC functionality can promote tumor regression and restore crypt 
homeostasis in CRC, suggesting that the Wnt pathway is a promis-
ing therapeutic target for CRC treatment.20

KRAS mutation in CRC
KRAS is one of the most commonly mutated genes in human can-
cer and has significant implications for CRC treatment. Within this 
context, various forms of KRAS mutations have been categorized 
into three main groups based on the altered codon: G12 (muta-
tions at codon 12), G13 (mutations at codon 13), and Q61 (muta-
tions at codon 61).21 Notably, KRAS mutations are prevalent in 
approximately 30–50% of CRC cases.6 Among these mutations, 
15 distinct point mutations are found to be particularly signifi-
cant: G12A, G12D, G12F, G12K, G12N, G12S, G12V, G12Y, 
G12C, G12E, G12I, G12L, G12R, G12T, and G12W. Of these, 
G12D and G12V are the predominant subtypes, accounting for ap-
proximately 41% and 28%, respectively, of all G12 mutations.22 
Clinical investigations consistently indicate that CRC patients car-
rying KRAS mutations tend to experience reduced survival rates 
compared to those without such mutations.23 Moreover, within the 
realm of KRAS mutations, G12D and G12V mutations have been 
associated with the poorest prognoses among CRC patients.24 Ad-
ditionally, research findings demonstrate that individuals with G13 
mutations in CRC patients experience significantly lower survival 
rates when diagnosed at stage I or II than when diagnosed with 
wild-type KRAS.6,25 Furthermore, for CRC patients harboring 
mutations at codon 12, the 5-year overall survival rate is notably 
lower than that for those carrying codon 13 mutations or wild-type 
KRAS.26

KRAS functions as a pivotal sensor that initiates a cascade of 
signaling molecules, facilitating the transmission of signals from 
the cell surface to the nucleus. This activation process signifi-
cantly influences essential cellular functions, including cell dif-
ferentiation, growth, chemotaxis, and apoptosis. Notably, KRAS 
plays a critical role in regulating key signaling pathways such as 
the PI3K-Akt and RAS-RAF-MAPK pathways, which play piv-
otal roles in cell proliferation.27–29 KRAS functions as a down-
stream component of the epidermal growth factor receptor (EGFR) 
pathway. Upon EGFR activation, the intracellular tyrosine kinase 
phosphorylates and activates KRAS, subsequently triggering the 
RAS-RAF-MAPK pathway. After activation, KRAS transitions to 
its activated state, KRAS-GTP, which is later hydrolyzed by GT-
Pase, returning to the inactive KRAS-GDP state. This dynamic 
equilibrium involves alternating between its active (KRAS-GTP) 
and inactive (KRAS-GDP) forms. However, mutations within 
KRAS lead to the abnormal activation of downstream pathways, 
such as RAS-RAF-MAPK or phosphoinositide 3-kinase (PI3K), 
regardless of EGFR activation status (Fig. 2).30,31 Persistently ac-
tive KRAS results in irregular and uncontrolled cell growth, cel-
lular transformation, heightened cancer metastasis, and increased 
resistance to chemotherapy and EGFR-targeted therapies across 
various cancer types, including CRC.32,33

Clinical challenges
Surgery stands as the primary curative approach for patients with 
nonmetastatic CRC, while chemotherapy offers an alternative ther-
apeutic avenue. Notable drugs utilized for CRC treatment include 
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5-fluorouracil (5-FU), capecitabine, irinotecan, oxaliplatin, cetuxi-
mab, and panitumumab.34 In addition to conventional chemother-
apy, targeted agents play a role in treating metastatic CRC. For ex-
ample, cetuximab, the first FDA-approved targeted drug for CRC, 
targets EGFR. Additionally, bevacizumab, focusing on VEGF, has 
gained approval. Other drugs like panitumumab, regorafenib, and 
ramucirumab, all targeting VEGF/VEGFR, have also been ap-
proved for CRC treatment. Notably, recent years have seen the ap-
proval of immune checkpoint inhibitors such as pembrolizumab, 
nivolumab, and ipilimumab.35 However, the landscape of CRC is 
complex and characterized by multifaceted processes marked by a 
sequence of genetic alterations.36 Notably, the pronounced occur-
rence of tumor heterogeneity in CRC, stemming from chromosom-
al instability or microsatellite instability,37 collectively influences 
the efficacy of targeted therapies.

Despite these promising avenues, drugs specifically targeting 
APC and/or KRAS mutations have yet to receive FDA approval. 
CRC frequently involves APC and KRAS mutations, rendering 
them attractive therapeutic targets. However, it is important to note 
that medications aimed at targeting the APC/WNT/beta-catenin 
signaling pathways are currently in the preclinical development 
phase (Table 1).38,39–46

Over the past decade, a dedicated pursuit has aimed to advance 
therapeutic strategies against the APC/WNT/beta-catenin signaling 
pathway in CRC patients. This endeavor has led to the discovery of 
a range of small molecules that effectively inhibit this pathway by 
targeting various signaling molecules.38,47,48 Notably, phase 1 and 

2 clinical trials have been conducted for these inhibitors, includ-
ing WNT974, ETC-1922159, RXC004, and CGX1321, which are 
PORCN inhibitors; OTSA101-DTPA-90Y, which functions as an 
FZD10 antagonist; OMP-18R5, a monoclonal antibody targeting 
FZD receptors; and PRI-724, a CEB/beta-catenin antagonist.49 De-
spite these promising efforts, none have yet secured FDA approval 
for CRC treatment. The exceptional complexity of the APC/WNT/
beta-catenin pathway plays a significant role in this process. Be-
yond APC mutations, beta-catenin can be further activated through 
alternate signaling pathways.50–53 Numerous studies suggest that 
these supplementary regulatory processes contribute to the ob-
served limitations in achieving satisfactory clinical outcomes with 
these inhibitors and antibodies. Moreover, the potential toxicity of 
these inhibitors on the intestinal epithelium, coupled with the risk 
of off-target effects, might have hindered their progress in clinical 
applications (Table 2).54

Presently, there is a lack of approved drugs specifically target-
ing KRAS for CRC treatment. Instead, approvals have been di-
rected toward inhibitors of downstream signaling cascades, such as 
the RAF and MEK pathways (Table 1).55 For example, selumetinib 
(AZD6244), functioning as a MEK 1/2 inhibitor, is designed to 
hinder the MEK enzyme within the RAS/MAPK pathway. Addi-
tionally, trametinib, a potent and selective ATP-independent inhibi-
tor of MEK1/2 kinases, falls within this category.56 Another exam-
ple is GDC-0623, a MEK inhibitor that enhances BIM expression, 
which is currently under investigation in a phase I clinical trial.57 
However, concentrating solely on downstream cascades unrelated 

Fig. 1. A schematic diagram showing the Wnt signaling pathway in normal colonic epithelial cells and colon cancer cells. APC, adenomatous polyposis 
coli; CBP, cAMP-response element binding protein; CIBP, calcium- and integrin-binding protein; CK, creatine kinase. CtBP, C-terminal binding protein; GRO, 
growth-regulated oncogene alpha; GSK, glycogen synthase kinase LRP5/6, low-density lipoprotein receptor-related protein (LRP)5 and 6; Tcf/Lef, T-cell fac-
tor/lymphoid enhancer factor.
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to KRAS may not yield the desired effectiveness in cancer treat-
ment. This challenge might arise from the inherent difficulty in 
pharmaceutically targeting KRAS.58 Research has highlighted sev-
eral obstacles in the quest for KRAS-targeted treatments (Table 2). 
These include the highly conserved nature of the GTPase catalytic 
domain on KRAS proteins, the competitive binding issues faced 
by small molecule drugs with substrates, and the limited number 
of binding sites on the KRAS protein surface for small molecule 
inhibitors.59–64 Nevertheless, strategies aimed at disrupting KRAS-
membrane interactions and altering KRAS subcellular localization 
continue to hold promise. Recent insights into functionally signifi-
cant posttranslational modifications of the KRAS protein, includ-
ing phosphorylation and ubiquitylation, introduce novel prospects 
for inhibiting KRAS activity.

Development of novel drug combinations for CRC treatment
The inception of combination therapy dates back to 1965 when 

Emil Frei and colleagues pioneered the inaugural utilization of 
combination chemotherapy in pediatric patients afflicted with acute 
leukemia.65 The resounding success of this innovative therapeutic 
paradigm ushered in a transformative era within clinical oncology.66 
Subsequently, cancer research has increasingly focused on the ex-
ploration of combination therapies designed to concurrently target 
disparate molecular pathways, resulting in favorable anticancer out-
comes. Concurrently, progress in cancer cell genomics, epigenom-
ics, transcriptomics, and proteomics has facilitated the identification 
of novel molecular targets, underpinning the development of highly 
selective targeted anticancer interventions.67 These targeted thera-
pies have substantially diversified the arsenal of combinational an-
ticancer modalities, capable of integration with other targeted thera-
pies or conventional chemotherapeutic agents.68

The efficacy of single-drug therapy often encounters limita-
tions, leading to the emergence of drug resistance.69 In fact, resist-
ance to 5-FU treatment occurs in approximately half of all CRC 
patients.70 Recently, there has been a growing focus on combining 

Fig. 2. A schematic diagram showing oncogenic signaling pathways associated with mutated KRAS. ARAF, serine/threonine-protein kinase A-Raf; BRAF, 
B-Raf proto-oncogene, serine/threonine kinase; ERK, extracellular signal-regulated kinase; KRAS, Kirsten rat sarcoma 2 viral oncogene homolog; MEK, mito-
gen-activated protein kinase kinase; RAF1, rapidly accelerated fibrosarcoma 1.
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drugs to leverage synergistic interactions. Combination therapy 
offers notable advantages. First, it allows for reduced drug dos-
ages, thereby decreasing the risk of off-target side effects.71 Sec-
ond, this approach targets multiple facets, effectively curbing the 
development of drug resistance.72 These attributes hold particu-
lar importance when addressing heterogeneous cancers such as 
CRC.73 The intrinsic heterogeneity of CRC is well documented. 
In some cases, patients with the same tumor may display distinct 
genetic alterations, and even cells within a tumor might carry var-
ying genetic mutations. Resistance to a single chemotherapeutic 
agent, whether innate or acquired, can stem from factors such as 
suppressed apoptosis or enhanced DNA repair, leading to cancer 
relapse or treatment resistance. Therefore, combination therapy is 
especially advantageous because diverse drugs can target differ-
ent pathways or genes. This approach substantially reduces the 
number of cancer cells that can withstand treatment, effectively 
delaying cancer recurrence and, optimally, achieving complete 
eradication.

The utilization of combination chemotherapy has evolved into 
the prevailing standard of care within the field of medical on-
cology. Considering the profusion of available chemotherapeu-
tic and targeted anticancer agents, forecasting and developing 
innovative drug combinations presents a formidable challenge. 
Thus, it is imperative to explore the requisite methodologies for 

prognosticating combinations that exhibit synergistic anticancer 
efficacy.

Conclusion
CRC represents a significant global health challenge, with con-
siderable variations in incidence rates across regions and gender 
differences. Among numerous genes that contribute to CRC de-
velopment, APC and KRAS mutations are pivotal factors driving 
tumorigenesis. Current research efforts are focused on inhibiting 
the APC/Wnt/beta-catenin and KRAS pathways. While progress 
has been made in the field of small molecules and inhibitors, their 
clinical application has encountered hurdles due to the complex-
ity of these pathways and the emergence of alternative signaling 
mechanisms. Combination therapy has emerged as a promising 
approach to address the complexity and heterogeneity of CRC. By 
targeting multiple facets and pathways simultaneously, combina-
tion therapies can potentially enhance treatment efficacy, mitigate 
drug resistance, and ultimately improve patient outcomes.

Acknowledgments
None.

Table 2.  Hurdles of development of targeted therapies

Target Obstacles

APC Potential toxicity; Off-target effects.

KRAS Highly conserved nature of the GTPase; Catalytic domain on KRAS proteins; Competitive binding issues; Limited binding sites.

APC, adenomatous polyposis coli; KRAS, Kirsten rat sarcoma 2 viral oncogene homolog; WNT, wingless-related integration site.

Table 1.  Selected targeted therapy trials for colorectal cancer

Treatment Trail Sample 
size Study groups Response 

rate Side effects Refer-
ence

WNT974 Phase 1 94 BRAF-mutant CRC, BRAF-
mutant CRC with RNF43 
mutation and/or RSPO fusion

N.A Dysgeusia, Decreased appetite, and Nausea 39

ETC-
1922159

Phase 1 20 Metastatic solid tumors N.A Dysgeusia, β-CTX increase, Fatigue, 
Constipation, and Nausea

40

RXC004 Phase 2 20 RNF43 or RSPO aberrated, 
metastatic, microsatellite 
stable colorectal cancer

Ongoing Ongoing 41

CGX1321 Phase 1 77 colorectal cancer or small 
bowel cancer carrying RSPO 
or RNF43 alterations

N.A Dysgeusia, Bone resorption 42

OTSA101-
DTPA-90Y

Phase 1 20 Progressive advanced 
Synovial Sarcomas

N.A Reversible hematological disorders 43

OMP-18R5 Phase 1 18 Advanced solid tumors N.A Fatigue, Vomiting, Abdominal pain, 
Constipation, Diarrhea and Causea

44

PRI-724 Phase 1 18 Advanced solid tumors N.A Hyperbilirubinemia, Diarrhea, Bilirubin 
elevation, Hypophosphatemia, Nausea, 
Fatigue, Anorexia, Thrombocytopenia 
and Alkaline phosphatase elevation.

45

GDC-0623 phase 1 45 Advanced solid tumors N.A Rash, Gastrointestinal symptoms 
and Visual disturbance

46

BRAF, B-Raf proto-oncogene, serine/threonine kinase; CRC, colorectal cancer; RNF, ring finger protein; RSPO, R-spondin; β-CTX, serum C-terminal telopeptide of type I collagen.
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